Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(12): 6463-6470, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501643

RESUMO

Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.


Assuntos
Acil Coenzima A , Benzaldeídos , Vias Biossintéticas , Ácidos Cumáricos , Eugenol , Eugenol/metabolismo
2.
Microb Biotechnol ; 17(3): e14427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465475

RESUMO

Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac /LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild-type LacI. An in-depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild-type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high-value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven-fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto-oligosaccharides (GOS).


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Repressores Lac/genética , Repressores Lac/química , Repressores Lac/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética
3.
Metab Eng ; 78: 235-247, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394056

RESUMO

cAMP receptor protein (CRP) is known as a global regulatory factor mainly mediating carbon source catabolism. Herein, we successfully engineered CRP to develop microbial chassis cells with improved recombinant biosynthetic capability in minimal medium with glucose as single carbon source. The obtained best-performing cAMP-independent CRPmu9 mutant conferred both faster cell growth and a 133-fold improvement in expression level of lac promoter in presence of 2% glucose, compared with strain under regulation of CRPwild-type. Promoters free from "glucose repression" are advantageous for recombinant expression, as glucose is a frequently used inexpensive carbon source in high-cell-density fermentations. Transcriptome analysis demonstrated that the CRP mutant globally rewired cell metabolism, displaying elevated tricarboxylic acid cycle activity; reduced acetate formation; increased nucleotide biosynthesis; and improved ATP synthesis, tolerance, and stress-resistance activity. Metabolites analysis confirmed the enhancement of glucose utilization with the upregulation of glycolysis and glyoxylate-tricarboxylic acid cycle. As expected, an elevated biosynthetic capability was demonstrated with vanillin, naringenin and caffeic acid biosynthesis in strains regulated by CRPmu9. This study has expanded the significance of CRP optimization into glucose utilization and recombinant biosynthesis, beyond the conventionally designated carbon source utilization other than glucose. The Escherichiacoli cell regulated by CRPmu9 can be potentially used as a beneficial chassis for recombinant biosynthesis.


Assuntos
Escherichia coli , Glucose , Glucose/genética , Glucose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicólise , Fermentação , Carbono/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Metab Eng ; 74: 150-159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328294

RESUMO

Elegant controllable protein degradation tools have great applications in metabolic engineering and synthetic biology designs. SspB-mediated ClpXP proteolysis system is well characterized, and SspB acts as an adaptor tethering ssrA-tagged substrates to the ClpXP protease. This degron was applied in metabolism optimization, but the efficiency was barely satisfactory. Limited high-quality tools are available for controllable protein degradation. By coupling structure-guided modeling and directed evolution, we establish state-of-the-art high-throughput screening strategies for engineering both degradation efficiency and SspB-ssrA binding specificity of this degron. The reliability of our approach is confirmed by functional validation of both SspB and ssrA mutants using fluorescence assays and metabolic engineering of itaconic acid or ferulic acid biosynthesis. Isothermal titration calorimetry analysis and molecular modeling revealed that an appropriate instead of excessively strong interaction between SspB and ssrA benefited degradation efficiency. Mutated SspB-ssrA pairs with 7-22-fold higher binding KD than the wild-type pair led to higher degradation efficiency, revealing the advantage of directed evolution over rational design in degradation efficiency optimization. Furthermore, an artificial SspB-ssrA pair exhibiting low crosstalk of interactions with the wild-type SspB-ssrA pair was also developed. Efforts in this study have demonstrated the plasticity of SspB-ssrA binding pocket for designing high-quality controllable protein degradation tools. The obtained mutated degrons enriched the tool box of metabolic engineering designs.


Assuntos
Endopeptidase Clp , Proteínas de Escherichia coli , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteólise , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Reprodutibilidade dos Testes , Proteínas de Transporte/metabolismo
5.
J Agric Food Chem ; 69(10): 3114-3123, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33666081

RESUMO

Transcriptional regulatory protein (TRP)-based whole-cell biosensors are widely used nowadays. Here, they were demonstrated to have great potential application in screening cell efflux and influx pumps for small molecules. First, a vanillin whole-cell biosensor was developed by altering the specificity of a TRP, VanR, and strains with improved vanillin productions that were selected from a random genome mutagenesis library by using this biosensor as a high-throughput screening tool. A high intracellular vanillin concentration was found to accumulate due to the inactivation of the AcrA protein, indicating the involvement of this protein in vanillin efflux. Then, the application of this biosensor was extended to explore efflux and influx pumps, combined with directed genome evolution. Elevated intracellular vanillin levels resulting from efflux pump inactivation or influx pump overexpression could be rapidly detected by the whole-cell biosensor, markedly facilitating the identification of genome targets related to small-molecule transmembrane transport, which is of great importance in metabolic engineering.


Assuntos
Benzaldeídos , Técnicas Biossensoriais , Engenharia Metabólica , Fatores de Transcrição/genética
6.
J Agric Food Chem ; 69(9): 2816-2825, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629856

RESUMO

Engineering an artificial microbial community for natural product production is a promising strategy. As mono- and dual-culture systems only gave non-detectable or minimal chlorogenic acid (CGA) biosynthesis, here, a polyculture of three recombinant Escherichia coli strains, acting as biosynthetic modules of caffeic acid (CA), quinic acid (QA), and CGA, was designed and used for de novo CGA biosynthesis. An influx transporter of 3-dehydroshikimic acid (DHS)/shikimic acid (SA), ShiA, was introduced into the QA module-a DHS auxotroph. The QA module proportion in the polyculture and CGA production were found to be dependent on ShiA expression, providing an alternative approach for controlling microbial community composition. The polyculture strategy avoids metabolic flux competition in the biosynthesis of two CGA precursors, CA and QA, and allows production improvement by balancing module proportions. The performance of this polyculture approach was superior to that of previously reported approaches of de novo CGA production.


Assuntos
Ácido Clorogênico , Microbiota , Escherichia coli/genética , Engenharia Metabólica , Ácido Quínico
7.
J Agric Food Chem ; 68(39): 10772-10779, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32864959

RESUMO

The biosynthetic efficiency of curcumin, a highly bioactive compound from the plant Curcuma longa, needs to be improved. In this study, we performed host cell and biosynthetic pathway engineering to improve curcumin biosynthesis. Using in vivo-directed evolution, the expression level of curcuminoid synthase (CUS), the rate-limiting enzyme in the curcumin biosynthetic pathway, was significantly improved. Furthermore, as curcumin is a highly hydrophobic compound, two cell membrane engineering strategies were applied to optimize the biosynthetic efficiency. Curcumin storage was increased by overexpression of monoglucosyldiacylglycerol synthase from Acholeplasma laidlawii, which optimized the cell membrane morphology. Furthermore, unsaturated fatty acid supplementation was used to enhance membrane fluidity, which greatly ameliorated the damaging effect of curcumin on the cell membrane. These two strategies enhanced curcumin biosynthesis and demonstrated an additive effect.


Assuntos
Curcumina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vias Biossintéticas , Ácidos Graxos Insaturados/metabolismo , Engenharia Metabólica
8.
Nat Commun ; 11(1): 1515, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251291

RESUMO

Hydroxytyrosol is an antioxidant free radical scavenger that is biosynthesized from tyrosine. In metabolic engineering efforts, the use of the mouse tyrosine hydroxylase limits its production. Here, we design an efficient whole-cell catalyst of hydroxytyrosol in Escherichia coli by de-bottlenecking two rate-limiting enzymatic steps. First, we replace the mouse tyrosine hydroxylase by an engineered two-component flavin-dependent monooxygenase HpaBC of E. coli through structure-guided modeling and directed evolution. Next, we elucidate the structure of the Corynebacterium glutamicum VanR regulatory protein complexed with its inducer vanillic acid. By switching its induction specificity from vanillic acid to hydroxytyrosol, VanR is engineered into a hydroxytyrosol biosensor. Then, with this biosensor, we use in vivo-directed evolution to optimize the activity of tyramine oxidase (TYO), the second rate-limiting enzyme in hydroxytyrosol biosynthesis. The final strain reaches a 95% conversion rate of tyrosine. This study demonstrates the effectiveness of sequentially de-bottlenecking rate-limiting steps for whole-cell catalyst development.


Assuntos
Evolução Molecular Direcionada/métodos , Escherichia coli/enzimologia , Sequestradores de Radicais Livres/metabolismo , Engenharia Metabólica , Álcool Feniletílico/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Vias Biossintéticas/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estudos de Viabilidade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Álcool Feniletílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido Vanílico/metabolismo
9.
Appl Microbiol Biotechnol ; 104(12): 5385-5393, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32338294

RESUMO

Butenoic acid is a short-chain unsaturated fatty acid and important precursor for pharmaceutical and other applications. Heterologous thioesterases are able to convert a fatty acid biosynthesis intermediate in Escherichia coli to butenoic acid. In order to acquire high titer and yield of the product, dynamically switching the metabolic flux from fatty acid biosynthesis pathway to butenoic acid is critical after achieving enough cell mass of the host. A previous developed switch for butenoic acid fermentation is based on triclosan molecule as the FabI inhibitor in the fatty acid biosynthesis cycle. However, triclosan is toxic to human, which may limit its pharmaceutical application. Alternatively, we here purposed a nontoxic switch of carbon flux by harnessing recently developed CRISPR interference (CRISPRi) approach. In our work, we constructed a CRISPRi/dCpf1-mediated dynamic metabolic switch to separate the host growth and production phase via switching the expression of the fabI gene in fatty acid biosynthesis pathway. After optimizing the programmable targets, the CRISPRi-based switch boosted the titer of butenoic acid by 6-fold (1.41 g/L) in fed-batch fermentation. Our work supported that the CRISPRi/dCpf1 switch could replace triclosan-based switch as a nontoxic switch for butenoic acid production, and outcompeted the later switch in the biomass accumulation of the host cell. Moreover, the CRISPRi/dCpf1 system was integrated into the chromosome of the host to improve its genetic stability for long-term fermentation and other applications.Key Points• A programmable metabolic switch was developed to replace the toxic chemical switch to separate the growth phase and production phase of the butenoic acid.• The programmable CRISPRi/dCpf1 switch was efficiently and stably integrated into the host genome to increase their genetic stability during fermentation.• The optimized metabolic switch simultaneously increased the host biomass and butenoic acid titer, and solved the paradox of the competition between growth and production.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/biossíntese , Engenharia Metabólica , Técnicas de Cultura Celular por Lotes , Biomassa , Vias Biossintéticas , Ciclo do Carbono , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Fermentação , Genoma Bacteriano , Microbiologia Industrial
10.
Appl Microbiol Biotechnol ; 104(8): 3417-3431, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103318

RESUMO

γ-Glutamylcysteine synthetase (γ-GCS) from Escherichia coli, which catalyzes the formation of L-glutamylcysteine from L-glutamic acid and L-cysteine, was engineered into an L-theanine synthase using L-glutamic acid and ethylamine as substrates. A high-throughput screening method using a 96-well plate was developed to evaluate the L-theanine synthesis reaction. Both site-saturation mutagenesis and random mutagenesis were applied. After three rounds of directed evolution, 13B6, the best-performing mutant enzyme, exhibited 14.6- and 17.0-fold improvements in L-theanine production and catalytic efficiency for ethylamine, respectively, compared with the wild-type enzyme. In addition, the specific activity of 13B6 for the original substrate, L-cysteine, decreased to approximately 14.6% of that of the wild-type enzyme. Thus, the γ-GCS enzyme was successfully switched to a specific L-theanine synthase by directed evolution. Furthermore, an ATP-regeneration system was introduced based on polyphosphate kinases catalyzing the transfer of phosphates from polyphosphate to ADP, thus lowering the level of ATP consumption and the cost of L-theanine synthesis. The final L-theanine production by mutant 13B6 reached 30.4 ± 0.3 g/L in 2 h, with a conversion rate of 87.1%, which has great potential for industrial applications.


Assuntos
Amida Sintases/metabolismo , Escherichia coli/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Glutamatos/biossíntese , Trifosfato de Adenosina/metabolismo , Amida Sintases/genética , Catálise , Evolução Molecular Direcionada , Escherichia coli/genética , Etilaminas/metabolismo , Glutamato-Cisteína Ligase/genética , Ácido Glutâmico/metabolismo , Ensaios de Triagem em Larga Escala , Microbiologia Industrial , Engenharia de Proteínas
11.
Metab Eng ; 57: 239-246, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837400

RESUMO

To mimic the delicately regulated metabolism in nature for improved efficiency, artificial and customized regulatory components for dynamically controlling metabolic networks in multiple layers are essential in laboratory engineering. For this purpose, a novel regulatory component for controlling vanillin biosynthetic pathway was developed through directed evolution, which was responsive to both the product vanillin and substrate ferulic acid, with different capacities. This regulatory component facilitated pathway expression via dynamic control of the intracellular substrate and product concentrations. As vanillin is an antimicrobial compound, low pathway expression and vanillin formation levels enabled better cell growth at an early stage, and the product feedback-activated pathway expression at later stages significantly improved biosynthesis efficiency. This novel multiple-layer dynamic control was demonstrated effective in managing the trade-off between cell growth and production, leading to improved cell growth and vanillin production compared to the conventional or quorum-sensing promoter-controlled pathway. The multiple-layer dynamic control enabled by designed regulatory components responsive to multiple signals shows potential for wide applications in addition to the dynamic controls based on biosynthetic intermediate sensing and quorum sensing reported to date.


Assuntos
Benzaldeídos/metabolismo , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Percepção de Quorum , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Regiões Promotoras Genéticas
12.
Nat Commun ; 10(1): 960, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814511

RESUMO

Genetic diversity is a result of evolution, enabling multiple ways for one particular physiological activity. Here, we introduce this strategy into bioengineering. We design two hydroxytyrosol biosynthetic pathways using tyrosine as substrate. We show that the synthetic capacity is significantly improved when two pathways work simultaneously comparing to each individual pathway. Next, we engineer flavin-dependent monooxygenase HpaBC for tyrosol hydroxylase, tyramine hydroxylase, and promiscuous hydroxylase active on both tyrosol and tyramine using directed divergent evolution strategy. Then, the mutant HpaBCs are employed to catalyze two missing steps in the hydroxytyrosol biosynthetic pathways designed above. Our results demonstrate that the promiscuous tyrosol/tyramine hydroxylase can minimize the cell metabolic burden induced by protein overexpression and allow the biosynthetic carbon flow to be divided between two pathways. Thus, the efficiency of the hydroxytyrosol biosynthesis is significantly improved by rearranging the metabolic flux among multiple pathways.


Assuntos
Oxigenases de Função Mista/metabolismo , Álcool Feniletílico/análogos & derivados , Vias Biossintéticas , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Oxigenases de Função Mista/genética , Modelos Biológicos , Álcool Feniletílico/metabolismo , Especificidade por Substrato
13.
Appl Microbiol Biotechnol ; 103(7): 3205-3213, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30770965

RESUMO

Transcriptional regulatory proteins (TRPs)-based whole-cell biosensors are promising owing to their specificity and sensitivity, but their applications are currently limited. Herein, TRPs were adapted for the extracellular detection of a disease biomarker, uric acid, and a typical pesticide residue, carbaryl. A mutant regulatory protein that specifically recognizes carbaryl as its non-natural effector and activates transcription upon carbaryl binding was developed by engineering the regulatory protein TtgR from Pseudomonas putida. The TtgR mutant responsive to carbaryl and a regulatory protein responsive to uric acid were used for in vitro detection, based on their allosteric binding of operator DNA and inducer molecules. Based on the quantitative polymerase chain reactions (qPCRs) output, the minimum detectable concentration was between 1 nM-1 µM and 1-10 nM for uric acid and carbaryl, respectively. Our results demonstrated that engineering the effector specificity of regulatory proteins is a potential technique for generating molecular recognition elements for not only in vivo but also in vitro applications.


Assuntos
Proteínas de Bactérias/genética , Biomarcadores/análise , Resíduos de Praguicidas/análise , Proteínas Repressoras/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Carbaril/análise , Mutação , Reação em Cadeia da Polimerase , Pseudomonas putida/genética , Fatores de Transcrição/genética , Ácido Úrico/análise
14.
Biotechnol Lett ; 40(7): 1101-1107, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29700725

RESUMO

OBJECTIVES: To improve the quality of mutagenesis libraries in directed evolution strategy. RESULTS: In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells. CONCLUSIONS: This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.


Assuntos
Evolução Molecular Direcionada/métodos , Biblioteca Gênica , Escherichia coli/genética , Plasmídeos/genética , Transformação Bacteriana/genética
15.
Microb Cell Fact ; 16(1): 187, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096626

RESUMO

BACKGROUND: Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although Escherichia coli is a useful organism for biosynthetic applications, its malonyl-CoA level is too low. RESULTS: To identify strains with the best potential for enhanced malonyl-CoA production, we developed a whole-cell biosensor for rapidly reporting intracellular malonyl-CoA concentrations. The biosensor was successfully applied as a high-throughput screening tool for identifying targets at a genome-wide scale that could be critical for improving the malonyl-CoA biosynthesis in vivo. The mutant strains selected synthesized significantly higher titers of the type III polyketide triacetic acid lactone (TAL), phloroglucinol, and free fatty acids compared to the wild-type strain, using malonyl-CoA as a precursor. CONCLUSION: These results validated this novel whole-cell biosensor as a rapid and sensitive malonyl-CoA high-throughput screening tool. Further analysis of the mutant strains showed that the iron ion concentration is closely related to the intracellular malonyl-CoA biosynthesis.


Assuntos
Técnicas Biossensoriais/métodos , Malonil Coenzima A/análise , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ensaios de Triagem em Larga Escala , Malonil Coenzima A/metabolismo , Floroglucinol/análise , Floroglucinol/metabolismo , Pironas/análise , Pironas/metabolismo
16.
Biosens Bioelectron ; 98: 457-465, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28715793

RESUMO

Knowledge of intracellular metabolite levels is important for the understanding of metabolic flux distributions. Whole-cell biosensors of key metabolites are ideal for the monitoring of carbon flow in important metabolic pathways, thus guiding metabolic engineering for microbial improvement. However, lack of biosensors for metabolites of interests has limited their applications. In this study, a genetically encoded whole-cell biosensor specifically responding to shikimic acid has been developed by screening a site-saturation mutagenesis library of the binding pocket of a uric acid-responsive regulatory protein. This biosensor has been successfully applied in analyzing and engineering metabolic flux in the shikimic acid pathway, through genome-wide screening of gene targets critical for the pathway flux, and by improving the specific activity of pathway key enzyme, AroG. This work demonstrates the feasibility of monitoring metabolic flux with the aid of whole-cell biosensors designed for key metabolites.


Assuntos
Técnicas Biossensoriais , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Ácido Chiquímico/isolamento & purificação , Carbono/química , Escherichia coli , Engenharia Metabólica , Ácido Chiquímico/química , Fatores de Transcrição
17.
Sci Rep ; 7: 45994, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387245

RESUMO

In this study the repressor of Escherichia coli lac operon, LacI, has been engineered for altered effector specificity. A LacI saturation mutagenesis library was subjected to Fluorescence Activated Cell Sorting (FACS) dual screening. Mutant LacI-L5 was selected and it is specifically induced by lactulose but not by other disaccharides tested (lactose, epilactose, maltose, sucrose, cellobiose and melibiose). LacI-L5 has been successfully used to construct a whole-cell lactulose biosensor which was then applied in directed evolution of cellobiose 2-epimerase (C2E) for elevated lactulose production. The mutant C2E enzyme with ~32-fold enhanced expression level was selected, demonstrating the high efficiency of the lactulose biosensor. LacI-L5 can also be used as a novel regulatory tool. This work explores the potential of engineering LacI for customized molecular biosensors which can be applied in practice.


Assuntos
Técnicas Biossensoriais/instrumentação , Lactulose/análise , Cristalografia por Raios X , Desenho de Equipamento , Engenharia Genética , Óperon Lac/genética , Repressores Lac/genética , Mutagênese/genética , Mutação/genética
18.
Metab Eng ; 40: 115-123, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28111248

RESUMO

Overexpressing key enzymes of biosynthetic pathways for overproduction of value-added products usually imposes metabolic burdens on cells, which can be circumvented by improving the key enzyme activities. p-Coumarate: CoA ligase (4CL) is a critical enzyme in the phenylpropanoid pathway that synthesizes various natural products. To screen for 4CL with improved activity, a biosensor of resveratrol whose biosynthetic pathway involves 4CL was designed by engineering the TtgR regulatory protein. The biosensor exhibited good specificity and robustness, allowing rapid and sensitive selection of resveratrol hyper-producers. A 4CL variant with improved activity was selected from a 4CL mutagenesis library constructed in the resveratrol biosynthetic pathway in Escherichia coli. This mutant led to increased production of not only resveratrol but also the flavonoid naringenin, when introduced in their corresponding biosynthetic pathways. These findings demonstrate the feasibility of improving key enzyme activities in important biosynthetic pathways with the aid of designed biosensors of pathway products.


Assuntos
Vias Biossintéticas/genética , Coenzima A Ligases/metabolismo , Ácidos Cumáricos/metabolismo , Escherichia coli/fisiologia , Regulação Enzimológica da Expressão Gênica/genética , Melhoramento Genético/métodos , Propanóis/metabolismo , Técnicas Biossensoriais , Coenzima A Ligases/genética , Ativação Enzimática/genética , Flavanonas/isolamento & purificação , Flavanonas/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Resveratrol , Estilbenos/isolamento & purificação , Estilbenos/metabolismo , Regulação para Cima/genética
19.
Toxins (Basel) ; 8(8)2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490569

RESUMO

Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata.


Assuntos
Ageratina/microbiologia , Alternaria/enzimologia , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Alternaria/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Peptídeo Sintases/genética
20.
Sci Rep ; 6: 21051, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26869143

RESUMO

Glycodiversification broadens the scope of natural product-derived drug discovery. The acceptor substrate promiscuity of glucosyltransferase-D (GTF-D), a carbohydrate-processing enzyme from Streptococcus mutans, was expanded by protein engineering. Mutants in a site-saturation mutagenesis library were screened on the fluorescent substrate 4-methylumbelliferone to identify derivatives with improved transglycosylation efficiency. In comparison to the wild-type GTF-D enzyme, mutant M4 exhibited increased transglycosylation capabilities on flavonoid substrates including catechin, genistein, daidzein and silybin, using the glucosyl donor sucrose. This study demonstrated the feasibility of developing natural product glycosyltransferases by engineering transglycosidases that use donor substrates cheaper than NDP-sugars, and gave rise to a series of α-glucosylated natural products that are novel to the natural product reservoir. The solubility of the α-glucoside of genistein and the anti-oxidant capability of the α-glucoside of catechin were also studied.


Assuntos
Proteínas de Bactérias , Carboidratos , Glucosiltransferases , Engenharia de Proteínas/métodos , Streptococcus mutans , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboidratos/biossíntese , Carboidratos/química , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Streptococcus mutans/enzimologia , Streptococcus mutans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...